PDA

View Full Version : Lụm lặt một ít kiến thức hơi cũ nhưng cũng hay hay


alex.chan
09-06-2012, 08:45 AM
Hi vọng góp 1 tí vào kho kiến thức của anh em.
Đây là phần phân tích khái quát về máy 8310.Xin được nối đuôi 2 bài giảng cực hay của anh Quang Thảo.
Phần 1: Trước khi bật máy có điều gì diễn ra bên trong MS
Phần trước chúng ta đã biết muốn đưa MS vào hoạt động, quá trình bật máy phải qua 2 giai đoạn khởi động và duy trì. Nếu ví đây là công việc nhóm lửa thì giai đoạn này được coi là thời điểm ta bật diêm mồi lửa.
Bài này ta vào sâu hơn xem việc mồi lửa diễn ra như thế nào và phải cần điều kiện gì.
Ngay sau khi cho pin (BATT) vào máy và chưa bật công tắc, nguồn dương pin (+BATT) được cấp ngay cho các khối cần nguồn dòng lớn như công suất cao tần, công suất âm tần... nhưng quan trọng hơn cả là nó phải được đưa về cổng của các chíp sơ cấp được tích hợp trong IC nguồn chính để thực hiện các nhiệm vụ sau :
1- Tạo xung RESET (có thể bên trong hoặc ngoài IC nguồn) để phục nguyên phần mềm khởi động sẫn sàng bước vào giai đoạn bật nguồn.
2- Đưa nhận dạng mẫu pin về IC xạc , sẵn sàng xạc pin chính khi có nguồn DC từ bộ xạc ngoài đưa vào.
3- Thông qua chip điều khiển lai trong PA nguồn pin chính phải thay thế được nguồn Backup Batt, kế thừa việc cung cấp năng lượng cho mạch dao động thạch anh 32,768 kHz để làm một số công việc, trong đó có nhiệm vụ tạo nhịp chuẩn cho đồng hồ thời gian .Trường hợp pin Backup yếu ,chíp điều khiển sẽ ra lệnh nối thông nguồn từ pin chính xạc bổ sung đảm bảo cho Backup lúc nào cũng đủ dung lượng điện, sẵn sàng thay thế khi pin chinh quá yếu hoặc được lấy ra ngoài .Ở một số máy hiện đại , tình trạng của pin Backup là một thông tin vô cùng quan trọng nên chíp điều khiển còn phải soan thông báo tình trạng Backup đưa về trung tâm xử lý (CPU) để lưu lưu giữ các dữ liệu cần thiết , trước khi thay nó.
4- Ở các mẫu máy có xuất xứ từ châu Âu, pin chính còn phải cung cấp một nguồn xác định để sãn sàng thay đổi trạng thái cổng G khi bật nguồn.
Tất cả các công việc này phải hoàn tất trước khi bật máy. Điều đó có nghĩa là ngay sau khi lắp pin vào thì lập tức một vài bộ phận của phần cứng đã phải làm việc -và người ta gọi đây là giai đoạn tiền trạm. Một số bạn có hỏi nếu có làm việc thì phải có dòng tĩnh thể hiện trên đồng hồ A ? Xin thưa đây chính là sự kỳ diệu của loại bán dẫn được gọi là MFET.
Rõ ràng để giai đoạn tiền trạm hoạt động chuẩn xác, bản thân "pin" phải có một dung lượng đủ lớn để đảm bảo ngưỡng mở cho các con chíp. Điều đó giải thích tại sao khi pin yếu thì việc khởi động MS và xạc pin thường gặp khó khăn.

tuyetha06sg
09-06-2012, 08:45 AM
Phần 2 : Công việc nhóm lửa
Bài trước ta đã biết sau khi pin đã gắn vào ổ, một bộ phận trong hệ thống cứng đã phải bắt tay ngay vào công việc tiền trạm. Nếu hoàn tất coi như ta đã rút que diêm ra khỏi hộp. Công việc còn lại là xòe lửa và nhóm lửa, trong bài này ta xét xem phải xòe lửa như thế nào.
Khi ấn công tắc nguồn, trạng thái điện trên cổng khởi động nguồn chính sẽ dần thay đổi đến bão hòa (hoặc không thể tăng hơn nữa hoặc không thể giảm hơn nữa) nhờ 1 điện trở hạn dòng nối tiếp với công tắc.
Nếu chip khởi động tốt (thường do 1 SCR kết hợp với 1 CMOS) thì IC nguồn sẽ phóng các điện áp thứ cấp danh định về hệ thống cứng mà trước hết là các bộ tạo dao động nhịp chuẩn, chip xử lí trung tâm, flash... Ngay lúc này nếu có cơ hội quan sat đồng hồ Ampe ta sẽ thấy kim đồng hồ nhích lên chút ít và hơi rung.
Nếu hệ thống này an toàn, phần mềm khởi động sẽ nối thông toàn bộ nguồn thứ cấp còn lại để cung áp cho hệ thống. Do tất cả linh kiện trong máy đã được cấp đủ nguồn nếu quan sát trên Ampe kế ta thấy kim dòng đột nhiên dâng cao. Đây chính là giai đoạn xòe lửa và cũng là khó khăn đầu tiên vì nếu trong hệ thống có một vài lỗi thì việc xác định mức lỗi để đưa ra quyết định cuối cùng đóng nguồn hay không là tùy thuộc ý muốn của từng nhà thiết kế.
Nhưng tựu trung lại : nếu việc cấp nguồn sẽ gây nguy hiểm cho các bộ phận khác thì CMOS sẽ hủy lệnh khởi động. Còn nếu hệ thống có thể tự sửa chữa các lỗi này sau khi cấp nguồn hoặc trong quá trình khởi động nguồn, thì CMOS vẫn quyết định phát lệnh để phần mềm khởi động làm việc. Đó là việc nối thông một xung nhịp vào hệ thống thứ cấp để duy trì tạm thời nguồn và thông báo giai đoạn khởi động đang làm việc bằng cách đưa logo của nhà sản xuất lên màn hình.
Trong giai đoạn hoàn tất nguồn thì việc tìm phần mềm hệ điều hành để duy trì nguồn liên tục là nhiệm vụ hàng đầu của chíp khởi động - mà công việc này nhà thiết kế đã định sẵn cho CPU.
Để kế thừa nhiệm vụ duy trì nguồn, CPU đã phải tự thực hiện một loạt các động tác như tiếp nhận dao động nhịp chuẩn để khởi động Flash gửi phần mềm về và soạn thảo thành các lệnh điều khiển trên nền nội dung của nó.
Đây là giai đoạn khó khăn nhất để đánh giá năng lực của hệ thống khởi động :
1- Nếu CMOS không đối ứng được tốc độ của phần mềm hệ điều hành thì sẽ không có nội dung điều khiển nguồn và như vậy nó sẽ tự tắt máy.
2- Nếu tốc độ phần mềm vượt ngưỡng kiểm soát của CMOS, nguồn sẽ duy trì trong trạng thái "rơi tự do" không ai kiểm soát, kết quả là điện áp thứ cấp sẽ tăng đột biến phá vỡ quy ước dòng điện làm ngắn mạch linh kiện, dẫn đến hệ thống bị hỏng mà trước hết là những khối có kết cấu mảnh, chịu dòng nhỏ như màn hình, màn cảm ứng, CPU...
Có thể liên tưởng việc bàn giao giai đoạn này như sau :
Trên xa lộ chiếc xe chở phần mềm khởi động chạy trước, kéo và kích nổ chiếc xe chở phần mềm hệ điều hành, sau khi nổ máy nó phải tăng tốc (nhờ nội dung của chính phần mềm hệ diều hành từ Flash gửi về) để đuổi kịp chiếc xe chở phần mềm khởi động. Khi 2 xe chạy ngang nhau, CMOS sẽ chuyển giao phần công việc này cho phần mềm hệ điều hành và tự dừng lại để chiếc xe thứ 2 tiếp tục sự nghiệp của mình là điều khiển hệ thống, trong đó có việc điều tiết nguồn chính xác.
Như vậy để bật được nguồn ta chỉ cần thay đổi được trạng thái điện áp trên cổng GCMOS để kích hoạt phần mềm khởi động trong chip nguồn. Khi trên tất cả các cửa thứ cấp nguồn danh định đã có thì coi như phần mềm khởi động và IC nguồn đã hoàn thành nhiệm vụ.
Còn nhiệm vụ của phần mềm hệ điều hành là kế tục đúng tốc độ xung để duy trì mỏ nguồn và phải biết điều khiển hệ thống nguồn hoạt động chuẩn xác. Có nghĩa là trong suốt quá trình MS làm việc nó phải nhận thức được nên bật bộ phận nào, nên tắt bộ phận nào - đặc biệt với các khối có công suất lớn nó còn phải biết điều tiết công suất thích hợp trong từng giai đoạn khai thác.
Rõ ràng xòe diêm là tay con người, xòe lửa là que diêm và cách bật diêm.
Còn giữ được lửa hay không là quá trình nhóm lửa : Mồi phải tốt và các que củi trong bó củi phải khô. Tất nhiên phải là loại củi dễ cháy.
Ở các máy có tich hợp thêm chức năng PDA thì hệ thống CMOS khởi động nguồn thường được tích hợp trên modul PDA và chịu sự bảo quản của chíp xử lý trung tâm. Như vậy việc khởi động nguồn được bắt đầu từ modul PDA, để sau đó chíp xử lý trung tâm tùy thuộc vào nội dung khai thác mà đóng cắt nguồn cho các khối tương ứng. Nói rõ hơn : hệ thống điều khiển cấp nguồn cho hệ thống chịu sự điều hành chung tại PDA, trong đó có khối "alô" .
Nói thì dài, nhưng tất cả quy trình trên chỉ xảy ra trong nháy mắt sau thời điểm ấn công tắc và thực chất công việc này cũng chỉ là việc kiểm tra các hệ thống công tắc thuật toán có làm việc và đạt tốc độ điều khiển của phần mềm hay không. Đó là điều kiện tiên quyết của bất kỳ hệ thống kỹ thuật số nào

ptscdn
09-06-2012, 08:45 AM
Phần 3 : Lửa lan trong đống củi ra sao ?
Bài trước ta đã biết : cổng CMOS có nhiệm vụ "kích nổ" chiếc xe thứ nhất (phần mềm khởi động) để cung cấp điện áp cho hệ thống phần cứng chuẩn bị vào làm việc và đồng thời phải "kéo nổ" chiếc xe thứ hai (phần mềm HĐH). Nếu quá trình kiểm soát hệ thống cứng suôn sẻ, phần mềm khởi động làm việc - nguồn thứ cấp được xác lập, logo khởi động hiện trên màn hình.
Sau khi được "kéo nổ", chiếc xe thứ hai tự tăng tốc đuổi kịp chiếc xe thứ nhất và đạt đến giai đoạn đồng tốc để kế thừa nội dung duy trì nguồn từ chiếc xe thứ nhất bàn giao. Kiểm soát sự đồng tốc này là hệ thống đồng bộ dữ liệu do các bộ tạo xung nhịp chuẩn đảm trách.
Chỉ khi nào giai đoạn 2 hoàn thiện thì logo phần mềm HĐH mới hiện lên màn hình và đây là thông điệp nói lên bước chuyển giao thế hệ đã diễn ra "thuận buồm xuôi gió".
Ngay sau khi tiếp nhận phần mềm HĐH từ flash, CPU có nhiệm vụ biến ý tưởng của HĐH thành các ngôn ngữ cụ thể để điều khiển chính xác chức năng hệ thống theo mô hình sau :
1- Áp đặt mã bàn phím và đồng bộ giải mã khối bàn phím mà mục đích cuối cùng là đặt lên mỗi công tắc phím một tần số xung, hoặc một điện áp xác định phù hợp nội dung của chính phím đó.
2- Áp đặt mã hiển thị và đồng bộ giải mã khối hiển thị mà mục đích cuối cùng là định vị các điểm ảnh đen trắng phải đứng đúng vị trí của mình trên màn hình, phản ảnh đúng nội dung thể hiện, đồng thời phải trùng khớp hình ảnh màu theo một chuẩn nào đó (VGA chẳng hạn).
3- Áp đặt mã âm thanh và đồng bộ giải mã khối âm thanh mà mục đích cuối cùng là biến các chuỗi tín hiệu số vô hồn tại đầu vào thành tín hiệu âm thanh sinh động nghe được theo một trật tự định sẵn. Và ngược lại.
4- Nhận dạng ngôn ngữ IMEI để hợp pháp hoá và tiếp nhận hoán vị ngôn ngữ này thành các lệnh thuật toán nối thông tuyến mã âm thanh mà trước hết là nối thông dữ liệu SIM.
5- Áp đặt mã công nghệ hoặc GSM hoặc DCS hoặc PCS và hệ thống băng tần chuẩn lên IC xử lí trung tần và dựa vào ngôn ngữ mã này chíp chức năng trong IC trung tần sẽ đưa ra các điện áp điều khiển (VC, VC ctrl) tương ứng để thay đổi trạng thái trong trung tần và lên cao tần. Như vậy thực chất việc giải mã trên trung tần là chỉ để đưa ra các điện áp tương thích để điều khiển PA HF, ANTSW, VCO L... Và chính đây là công việc quan trọng hàng đầu quyến định đến chất lượng sóng và mạng.
6- Đồng bộ toàn bộ hệ thống tăng ích như MMC, camera, màn hình cảm ứng... nhằm đưa chúng về một chuẩn, tránh "trống đánh xuôi, kèn thổi ngược". Tất nhiên, mỗi thiết bị có một định dạng riêng và một chuẩn riêng nằm trong nội dung phần mềm HĐH.
Để hoàn tất một khối lượng nội dung khổng lồ trên chỉ trong mấy giây đầu khi bật máy, hệ thống truyền dữ liệu phải chuyển động với một tốc độ rất cao. Tuỳ theo định lượng và quy chuẩn thời gian mà nhà sản xuất sẽ định cấu hình cho MS có tốc độ tương ứng (hiện nay trên đa số máy đời cao, tốc độ này đạt xấp xỉ tốc độ máy tính thế hệ Pen II). Chính vì vậy xung nhịp chuẩn phải được nâng cao, thường là 26MHz. Nếu tất cả công đoạn trên hoàn thiện, đến đây ta có thể thấy :
Bên trong :
- Các nguồn thứ cấp ra trên IC nguồn được điều khiển đóng mở chuẩn xác.
- Nếu cho SIM vào máy, VSIM sẽ duy trì. VCctrl trên PAHF liên tục tăng giảm để điều chỉnh sự tăng ích của sóng. Các điện áp VC thuộc GSM (hoặc DCS, hoặc PCS) xuất hiện tương thích với chuẩn của SIM.
- Các điện áp trên khối xử lí âm thanh đều có sau đó sẽ giảm dần để đưa MS về trạng thái chờ.
Bên ngoài :
- Hai màn hình chính và phụ sáng lên, sau đó ít giây ánh sáng này tự tắt, và giữ lại nội dung hiển thị.
- Giai đoạn thay đổi logo liền kề nhau và không đứt đoạn.
- Toàn bộ LED bàn phím sáng sau đó tự tắt đồng nhất cùng với LED màn hình để chuyển sang chế độ chờ.
- Trên màn hình lúc này phải thể hiện cột sóng đủ và ổn định, mạng chính xác và vững, pin phải khoẻ.
- Thay đổi nội dung trên menu hệ thống, máy tỏ ra điều khiển chính xác.
Nếu vì một lí do gì đó, tốc độ xung nhịp không đáp ứng được với tốc độ di chuyển của dữ liệu sẽ xảy ra hiện tượng "chen lấn xô đẩy" trên các cổng bus, kết quả là các dữ liệu sẽ xung đột, ứ đọng, dẫn đến việc kiểm soát hệ thống của CPU bị gián đoạn, thậm chí bị kẹt - lúc này chẳng gì tốt hơn là hoãn cuộc hành quân, mà động tác cụ thể của CPU thường làm là cắt điện toàn bộ hệ thống. Còn người sử dụng cũng thường làm cái việc đúng nhất là cho nó vào bệnh viện.

hoabinh
09-06-2012, 08:45 AM
Phần 4 : IC nguồn và nhiệm vụ các điện áp thứ cấp
Bài trước ta đã biết để hoàn thành 6 bước trong thời điểm khởi động và duy trì MS, một yêu cầu hàng đầu được đặt ra là khối nguồn phải hoạt động ổn định trên tất cả các tuyến sơ cấp và thứ cấp.
Bài này ta khảo sát các tuyến điện áp này trên máy NOKIA DCT4 8310. Từ cực dương pin, điện áp +3.6V được cấp trước cho các tuyến :
- Vào N700 trên các chân 1, 2, 22 và 3 cấp cho khối tạo chuẩn sóng mang, tiền khuyếch đại cao tần, xử lí chọn công nghệ GSM - DCS và công suất phát cao tần GSM. Trên chân 7 cấp cho công suất phát cao tần công nghệ DCS.
- Vào V300, V301, V329 thông qua R304 và R307 cấp cho khối tăng ích rung và LED.
- Vào B301 cấp cho chuông.
- Vào V351 cấp cho hồng ngoại thông qua R350.
- Tại D200 , nguồn này được chia thành 2 tuyến :
Tuyến 1 :
1- Vào các chân N10 và D10 để nhận dòng xạc qua R200.
2- Vào L9 cấp cho bộ dò sai xác định dòng xạc cho pin
3- Vào F2 cấp cho tiền khuyếch đại và công suất âm tần gồm : chuông, rung, LED.
Tuyến 2 :
Để tạo ra các điện áp thứ cấp cung ứng cho toàn hệ thống, trước khi vào các cổng sơ cấp của D200, cực dương pin phải đi qua qua tổ hợp lọc LC :
1- Qua L260-C260 vào P8 để tạo điện áp thứ cấp 2,8 vôn VANA tại N8 cung ứng cho tiền khuyếch đại âm tần.
. Nếu nguồn này sụt, các bộ phận thuộc khối này ( loa, chuông, rung) hoạt động chập chờn, công suất ra sút kém hẳn - chuông, loa kêu nhỏ, rung yếu.
. Nếu nguồn này mất toàn bộ khối âm tần bao gồm chuông, rung, loa không hoạt động.Không có AFC về G660, dao động nhịp chuẩn không ổn định - kéo theo sóng mạng không ổn định , nếu nặng có thể mất sóng ,mất mạng, hoặc cả hai.
2- Qua L261-C261 vào N9 và N11 để tạo điện áp thứ cấp 2,8 vôn VFLASH1 và 2 tại M18 và P11 cung ứng cho các khối tăng ích như IR, radio, và hỗ trợ cho IC xạc.
Nếu mất VFLASH1 thì màn hình, hồng ngoại không hoạt động. Nhiều khi dẫn đến việc định mức xạc không chính xác ( hoặc dòng xạc quá lớn pin thường hay bị nóng, hoặc dòng xạc quá non làm thời gian xạc lâu ).
Nếu mất VFLASH2 thì khối radio không làm việc. Nếu yếu nghe đài bị sôi và rú rít.
3- Qua L262-C262 vào N14 tạo điện áp thứ cấp 2,8 vôn VCORE tại M13 cung ứng cho các IC có chức năng xử lí hệ thống phần mềm mà chủ yếu là cho khối logic (CPU và Flash).
Nếu mất VCORE thì toàn bộ hệ thống lệnh tê liệt, có máy không nạp được phần mềm.
Nếu VCORE yếu hệ thống làm việc không trung thực, lúc có lúc không. Mà hiện tượng thường thấy là thỉnh thoảng máy bị treo không rõ nguyên nhân.
4- Qua L265-C265 vào A1 tạo điện áp thứ cấp 1,8 vôn VIO tại B1 cung ứng cho các bộ nhớ đệm (tín hiệu đã vào, chuẩn bị ra) và hệ thống điều khiển chúng.
Điện áp VIO thực chất là điện áp cấp chủ yếu cho RAM (cả DDRAM và SDRAM ), nếu mất điện áp này CPU không nhận được dữ liệu để xử lí thành lệnh điều khiển và như vậy buộc phần mềm khởi động phải cắt nguồn. Đặc biệt nếu VIO yếu sẽ làm cho việc nạp phần mềm không đủ quãng, và quá trình nạp phần mềm thường thất bại.
5- Qua L264-C264 vào P2 và M14 để tạo ra điện áp :
-VR1A trên P14 - 4.75V cấp cho IF.
-VR1B trên M12 - dự phòng .
-VR2 trên L12 - 2,8 vôn cấp cho khối đồng pha Tx (cả GSM và DCS).
Nếu VR1A mất thì các điện áp điều khiển (VC) từ IC trung tần đến chuyển mạch anten, VCO... không có : sóng và mạng theo đó cũng không có. Biểu hiện rõ nét nhất là VC điều khiển VCO không có.
Nếu VR2 mất thì điện áp cấp cho khối khuyếch đại ra (Tx) mất -> sóng mất .Các băng tần không làm việc, việc liên lạc bị gián đoạn.
6- Qua L263-C263 vào K13-L11 tạo ra điện áp :
-VR3 trên J12 - 2,8 vôn, cung ứng cho bộ dao động nhịp chuẩn (Clock) và chíp xử lý xung này , trong đó có việc điều chế thành tín hiệu RFCLCK.
-VR6 trên L13 - 2,8 vôn cấp cho khối xử lý tín hiệu cận trung tần ( IF).
VR3 mất, dao động nhịp chủ không làm việc, mất RFCLCK về vi xử lí, việc khởi động nguồn không kết quả. Biểu hiện cuối cùng là không hiện logo khởi động trên màn hình. Nên lưu ý là trong VR3 còn một thành phần điện thứ 2 là xung (AC) kích thích cho sơ cấp thạch anh trong G660 hoạt động. Nếu mất xung này, có thể thạch anh vẫn cho xung ra thứ cấp ra tại H1, nhưng chắc chắn không đạt chuẩn, đây là một vấn đề nghiêm trọng vì kèm theo đó là hàng loạt các lệnh ảo được hình thành. VR3 còn được đưa về F2-ICIF cấp cho chíp điều chế RFCLCK về CPU trên E4.
Nếu điện áp VR6 mất, khối xử lí tín hiệu gần trung tần không hoạt động>sóng và mạng đều mất. Nếu điện áp này yếu, sóng và mạng chập chờn.
7- Qua Lo và Co về J14, K11, L14 tạo điện áp VR5 - 2,8vôn trên J11, VR7 - 2,8 vôn trên K12, VR4 - 2,8 vôn trên K14.
- VR5 cấp cho khối chuyển băng và xử lí băng tần thấp (900 MHz) trên chuyển mạch anten. Mất điện áp này, băng tần 900 Mhz không hoạt động mà biểu hiện nặng nhất là không liên kết được mạng có băng tần 900 MHz.
- VR7 cấp cho mạch VCOL. Nếu VR7 mất, không có VCO, không dò được mạng dù bất cứ hình thức nào. Nếu VR7 yếu, mạng chập chờn và thường phải dò thủ công.Trong thành phàn VR7 còn có xung kích hoạt cho khối dao động (OSC) hoạt động , tuy nhiên xung này cao hơn nhiều so với xung đưa vào G660 , và thường được trích xuất từ chíp điều chế RFCLCK .
- VR4 cấp cho khối xử lí tín hiệu RF-IFRX. Nếu mất thì toàn bộ tuyến nhận (Rx) bị treo, trong đó có mạng. Nếu điện áp này yếu, tín hiệu bị sôi, rối rít và bị ngắt quãng bất bình thường. Nếu nặng hơn chút ít thì ngay cả chế độ chờ cũng bị ảnh hưởng mà biểu hiện thường thấy là các cuộc gọi đến hay bị treo vô cớ.
8- Tại chân P3, người ta nối thông với pin BACKUP dẫn nguồn nuôi bộ tạo nhịp chuẩn xung đồng hồ thời gian và tạo dòng nạp xả trên C213 làm xung kích hoạt sơ cấp cho thạch anh B200 tại chân P2. Nếu nguồn này yếu, đồng hồ thời gian chạy chậm. Nếu tụ C213 khô, theo đó nhịp thời gian trên đồng hồ bị loạn, nếu nặng đồng hồ thời gian không chạy. Phụ trợ cho mạch này là tụ C212 có tính chất giúp CMOS hoạt động ổn định ngay cả khi pin BACKUP yếu.
Qua diễn giải trên, chúng ta có thể thấy : tương thích mỗi đường vào sơ cấp là những đường ra thứ cấp tương ứng. Do vậy nếu có hiện tượng một nguồn thứ cấp nào đó bị yếu hoặc mất, chúng ta chỉ việc kiểm tra sự thông tuyến từ sơ cấp (vào) đến thứ cấp (ra) của tuyến ấy mà không ảnh hưởng đến tuyến khác.

vuongthaivan
09-06-2012, 08:45 AM
Phần 5 : Bộ dao động nhịp chủ hệ thống (13 hoặc 26MHz) hoạt động như thế nào
Có thể nói việc cho ra hoàn chỉnh các điện áp trên thứ cấp IC nguồn là dấu hiệu hoàn chỉnh của phần mềm khởi động và phần mềm hệ thống. Nhưng để duy trì cho toàn bộ hệ thống hoạt động bình thường lại còn phải phụ thuộc vào nhiều điều kiện ràng buộc hữu cơ của phần cứng, mà chủ yếu là sức bền của linh kiện.Trong số đó có một bộ phận thiết yếu mà bất cứ sự trục trặc nào trong việc điều khiển chức năng hệ thống cũng đều liên quan hoặc trực tiếp, hoặc gián tiếp đến nó - đó là các bộ dao dộng nhịp chủ (OSC CLCK). Đối với dòng NOKIA khi nói đến dao động nhịp chủ là người ta nói đến bộ dao động 13 hoặc 26 MHz. Tiếp tục với loại máy Nokia 8310, ở bài này chúng ta tìm hiểu xem nó làm việc ra sao.
Trong giao tiếp kỹ thuật số, xung CLCK giữ vai trò như một người nhạc trưởng hướng dẫn các nhạc công trong dàn nhạc dữ liệu chơi đúng nhịp phách, tiết tấu bản nhạc cần thể hiện (chính là ngôn ngữ điều khiển chức năng) : đảm bảo lúc nào nhanh, lúc nào chậm, lúc nào mạnh, lúc nào yếu... đúng nội dung thể hiện của bản nhạc (bản nhạc ở đây chính là nội dung phần mềm hệ điều hành).
Xung CLCK được tạo ra trong máy 8310 được bắt đầu từ bộ G660, nguyên lý hoạt động của nó như sau :
G660 chính là 1 mạch tổ hợp trong đó gồm 2 khối chính : Khối dao động và khối khuyếch đại dao động.
- Khối dao động đươc tạo thành nhờ 1 tinh thể thạch anh , để thạch anh này hoạt động người ta phải tìm cách đưa vào cửa sơ cấp của nó 1 xung mồi và thường được " cài " vào nguồn DC cung cấp cho bộ khuyếch đại.
- Khối khuyếch đại chủ yếu do 1 tranzito có hệ số phẩm chất và tần số cắt cao đảm nhận.
Như vậy trên bộ dao động 13 (hoặc 26) MHz người ta phải thỏa mãn 2 nguồn điện : AC (xoay chiều) để kích hoạt thạch anh và DC (một chiều) để nuôi bộ khuyếch đại. Trong NOKIA 8310 nguồn DC này chính là VR3.
Nguồn DC VR3 còn phải đưa về chân F2-ICIF để cấp cho khối điều chế xung CLCK thành RFCLCK được tích hợp trong IC này. Nếu tại F2 không nhận được VR3, tại E4 không có xung RFCLCK về CPU, CPU không hoạt động.
Nguồn AC được trích xuất sau bộ chia 1/2 xung đồng hồ thởi gian 32,768 kHz được tích hợp trong IC nguồn và được cài vào VR3 ngay trong IC này.
Để cho thạch anh 32,768 hoạt động, trên cổng vào của thạch anh này nhà sản xuất thường thiết kế một bộ dao động đơn giản do một tụ điện có điện dung phù hợp với thiết kế, giữ vai trò nạp xả tạo thành xung đưa vào mồi sơ cấp. Điện dung của tụ điện quyết định thời gian nạp xả - cũng có nghĩa quyết định tần số xung trên sơ cấp của 32,768. Trong máy 8310 tụ này chính là C213 OSCCAP trên chân M4. Nếu tụ này hỏng, không có xung mồi cho thạch anh B200, tất nhiên không có xung 32,768 => xung mồi cho G660 không có, làm G660 liệt. Dĩ nhiên như vậy sẽ không có xung RFCLCK đưa về CPU : toàn bộ hệ thống ngừng hoạt động. Rõ ràng khởi tạo để có dao động nhịp chủ (hoặc 13, hoặc 26 MHz) chính là chiếc tụ nhỏ xíu C213 này.
Nhưng trong quá trình hoạt động, không phải lúc nào hệ thống tín hiệu cũng ổn định do các nguyên nhân như nguồn lúc khỏe, lúc yếu ; tín hiệu bị can nhiễu, mạch in bị xâm thực của môi trường... tác động vào hệ thống phá rối sự hoạt động ổn định của thạch anh. Để khắc phục tình trạng này, tại chân 1 G660 người ta phải đưa 1 xung AFC (tự động điều chỉnh tần số) được lấy từ khối xử lý âm tần lên hỗ trợ. Muốn có AFC trước hết khối xử lý âm tần phải hoạt động tốt, mà cụ thể là ICDSP.
Qua nội dung trình bày trên ta có thể hình dung : Để cho bộ dao động nhịp chuẩn 13 hoặc 26 MHz hoạt đông bền vững, ngoài việc bản thân nó phải tốt và việc cấp nguồn cho khối khuyếch đại biên độ phải chuẩn xác thì hệ thống tín hiệu nội cũng phải tốt . Nhưng nó lại gặp nhiều nguy cơ mất ổn định do các nguyên nhân sau :
Dao động của thạch anh cũng không nằm ngoài nguyên lý dao động vật lý thông thường nào có nghĩa là biên độ của nó sẽ tắt dần nếu xung kích hoạt không kịp đáp ứng. Chính vì vậy xung này thường là nguyên nhân chính làm cho thạch anh chủ hoạt động thiếu chính xác, dẫn đến việc điều khiển hệ thống không chuẩn mực trong đó có việc điều khiển hệ thống nguồn. Nếu bạn để ý kỹ hơn sẽ nhận thấy mạch này hoạt động như một biến thể mạch vòng khóa (PLL) - tất cả các tín hiệu đều bị giàng buộc lẫn nhau trong một vòng tròn khép kín, chúng giám sát, hiệu chỉnh cho nhau chỉ thông qua một vòng tròn tín hiệu - Đó chính là XUNG DAO ĐỘNG NHỊP CHỦ HỆ THỐNG

haithanhakatonbo
09-06-2012, 08:45 AM
Phần 6 : Các xung nhịp trong giao tiếp hệ thống
Qua nội dung bài 7 chúng ta biêt : Trong máy NOKIA 8310, muốn có dao động nhịp hệ thống, trước hết ta phải giải quyết cho bộ dao động nhịp đồng hồ thời gian 32,768 hoạt động bằng cách cấp cho sơ cấp thạch anh này một xung khởi động thông qua C212 (OSC CAP) . Chỉ khi nào dao động nhịp hệ thống hoạt động thì CPU mới soạn thảo thành công các lệnh điều khiển hệ thống phần cứng đưa MS vào làm việc, và lúc này mới xuất hiện AFC về ổn định thạch anh dao đông nhịp hệ thống.Hành trình trên thực chất là một biến thể của mạch vòng khóa, mà bắt đầu chính là chiếc tụ nhỏ C212 trên IC nguồn.
Bài này chúng ta xem xung dao động nhịp hệ thống được xử dụng như thế nào :
Sau khi được điều chế thành RFCLOCK trong IC trung tần và về M5 IC CPU, xung nay được rẽ thành 2 nhánh chính :
* Nhánh thứ nhất vào bộ chia để lấy ra hê thống xung nhịp có tần số thấp và cực thấp phù hợp với hệ thống dữ liệu điều khiển khối nguồn và âm tần :
- Tại L1 CPU là xung SLEEPX đưa về B11 IC nguồn để thực hiện việc duy trì nguồn. Khi nhận được xung này và sau khi so sánh với thông số trong hệ thống phần mềm cơ sở , IC nguồn sẽ đưa xung PURX về CPU để duy trì nguồn.
Gặp trường hợp thay IC nguồn từ một máy cũ mà gặp lỗi cứ sau 30' bị mất nguồn thì chúng ta phải đồng bộ lại IMEI để có xung PURX .
- Từ G1 CPU về A8 IC âm tần tạo lệnh bật tắt các chúc năng rung,chuông,loa,MIC. Nếu mất xung này biểu hiện rõ nhất là có cuộc giọi đến nhưng không có rung và chuông. Và trước hết là ta không thể có mức âm lượng theo ý muốn đã định trên màn hình.
...
* Nhánh thứ Hai được đưa về bộ nhân để tạo ra các xung nhịp có tần số cao và rất cao phù hợp với hệ thống dữ liệu điều khiển các chức năng trên khối cao tần, trung tần, và các giao tiếp trong khối giải mã,mã hóa âm thanh.Ngoài ra nó còn phải đáp ứng tốc độ trong khi giao tiếp với máy tính .
- Từ K3 CPU về D10 IC nguồn là xung trong bó điều tiết nguồn cho tuyến giao tiếp cận trung tần trong IC DSP (trước giải mã và sau giải mã). Nếu mất xung này việc giải mã và mã hóa âm thanh không thành công, mà biểu hiện rõ nhất là không có AFC về G660.
- Từ M5 CPU về A13 IC nguồn để tạo lệnh kết nối tín hiệu vào (RX),ra (TX) thông qua bộ hợp pha trong ICDSP. Đây là xung rất quan trọng bởi vì nó phối hợp với toàn bộ hệ thống dữ liệu tuyến thoại để tạo nền quyết định cho sóng và mạng. Và như vậy nếu mất xung này cũng có nghĩa là mât sóng và mạng.
- Từ G11 lên E1 IC trung tần kết hợp với phần mềm của SIM để điều tiết hệ thống trung tần và cao tần. Nếu không có xung này, các điện áp VC điều khiển hệ thống cao tần không có . Đặc biệt là việc cung ứng các lệnh trên IC công suất phát (PAHF) và ANT.SW hoàn toàn bị vô hiệu hóa . Và như vậy khối cao tần không làm việc.
- Từ F11 CPU về chân 29 ICN356 để tạo lệnh điều khiển khối RADIO. Mất xung này, khối RADIO không hoạt động.
- Từ C6 về chân 5 cáp nối màn hình (X300), cung cấp cho RAM màn hình . Nếu mất xung này, màn hình không có ảnh.
- Tại B2 là xung giao tiếp với SIM. Nếu mất xung này, không có dữ liệu SIM về CPU, nguồn V.SIM bị cắt .
...
Tóm lại , để tạo ra các xung nhịp hệ thống tương thích trên mỗi tuyến dữ liệu, xung nhịp RFCLCK phải :
- Vào bộ chia để tạo ra các xung nhịp có tần số thấp phù hợp cho các tuyến nguồn và âm tần. Do vậy nếu một xung CLCK nào đó trong hệ thống này bị ngắn mạch (chập mát) thì toàn bộ các khối liên quan cũng bị tê liệt. Điều này lý giải vì sao nếu chập phím volum thì toàn bộ hệ thống bàn phím tê liệt theo.
- Vào bộ nhân để tạo ra các xung nhịp có tần số cao cho phù hợp với tốc độ truyền dữ liệu trên các tuyến cao tần và giao tiếp máy tính. Tần số CLCK càng cao chứng tỏ hệ thống cứng càng mạnh . Để giảm bớt các chíp nhân trong CPU , ở các máy có tốc độ cao người ta thường thiết kế bộ dao đông nhịp cơ sở có tần số gốc cao hơn 13MHz .
Nếu mất xung thuộc bộ chia thì khối nguồn và âm thanh bị mất hẳn - Nếu chập mát thì cả âm thanh và nguồn cùng mất .
Nếu mất xung thuộc bộ nhân thì các khối cao tần bị ảnh hưởng trực tiếp . Đặc biệt là tuyến giao tiếp với FLASH , nó còn làm cho toàn bộ hệ thống bị treo . Nếu chập thì không khởi động được nguồn , thậm chí sau khi thay IC nguồn không thể đồng bộ lại được .
Đây là chủ đề rất rộng , chúng tôi sẽ đề cập trong một chuyên đề riêng

truongvinh01
09-06-2012, 08:45 AM
Phần 7: VCO và nguyên lý hoạt động của nó
Chúng ta đã biết Ms là thiết bị liên lạc di động không dây ký thuật số hoạt động trong môi trường tần số siêu cao. Vì vậy, ngoài các yêu cầu thông thường của một thiết bị viễn thông, nó còn đòi hỏi nhiều tiêu chuẩn kỹ thuật nghiêm ngặt khác, trong đó có việc phải luôn luôn duy trì kết nối chính xác các băng tần đã định trên mọi địa hình với tốc độ cao .
Riêng với khối cao tần, là miền tiếp xúc cửa ngõ nên việc tìm giải pháp nâng cao tốc độ truyền là việc đặc biệt được chú ý đối với bất cứ một nhà thiết kế MS nào. Việc dùng VCO để thực hiện việc tinh chỉnh đồng bộ sóng mang là một lý do như thế .
Vậy VCO là gì? VCO là chữ viết tắt của từ tiếng Anh: Vol Cotrol OSC tạm dịch là: điều khiển dao động theo điện áp. Cấu tạo của nó phụ thuộc nhiều vào ý đồ của các nhà thiết kế , hoặc họ dùng Varicap, hoặc họ dùng gốm áp điện làm phần tử tạo dao động chủ động. Nhưng có một nguyên lý chung là chúng hoạt đông theo biến thể vòng khóa đáp ứng tần số.
Cấu tạo khối của nó được mô tả như sau: Phần tử dao dộng chủ động được chọn là varicap, đặc tính của loại linh kiện này là khi ta đặt một điện áp ngược trên 2 đầu cực của nó, lập tức tiếp giáp của nó sẽ xuất hiện điện dung bằng chính nguồn đặt lên chúng. Điện áp này sẽ xả ngay khi được nối thông với một phụ tải hoặc thay đổi chiều cấp điện trên cực của chúng.Quá trình này lặp đi lặp lại nhiều lần với tốc độ cao, sẽ hình thành tần số của VCO.Như vậy tốc độ nạp xả trong VCO quyết định tần số của chính nó, mà tốc độ này phụ thuộc vào điện áp điều khiển VC .Áp VC càng cao, điện dung càng thấp, tốc độ nạp xả càng nhanh-> ứng với tạo tần số càng cao, áp VC càng thấp, điện dung càng cao, tốc độ nạp xả càng chậm-> ứng với tần số càng thấp.
Có điều các "tín hiệu" này còn phải đi qua bộ phận lọc sai và khuyếch đại đủ lớn rồi mới nối thông vào khối xử lý tiếp theo nằm trong IF.
Cũng có một giải pháp nữa cho việc tạo ra VCO, đó là tạo mối liên kết của Varicap với gốm áp điện, nhưng ít được dùng hơn.
Tóm lại để tạo được một tần số có kiểm soát tự động, điều kiện tiên quyết là phải có một linh kiện có thể tạo ra xung sơ cấp, xung này sẽ được lọc sai và xếp đặt thành chuỗi tần số đáp ứng với điện áp điều khiển VC thông qua các IC thuật toán .
Mạch VCO trong máy Nokia 8310 :
Trong điện thoại di động Nokia 8310 sử dụng G650 làm bộ dao động VCO, mạch điện hoạt động như sau:
Điện áp VR7 được lấy từ K12D200, qua điện trở hạn chế dòng R652 và được lọc nhiễu bởi các tụ C650,655,656,657 ,được đưa vào chân 3G650 cấp cho khối lọc sai và khuyếch đại. Chân 2,4,6,7,8 G650 được nối "mát", trong đó chân 2,8 cấp "mát" cho khối lọc sai và khuyếch đại- mất "mát" tại các chân này , khối lọc sai và khuyếch đại trong VCO không hoạt động, tần số VCO không tới T650, toàn bộ hệ thống cao tần bị tê liệt,sóng ảo xuất hiện. Chân 4,6,7 cấp mát cho hệ thống varicap tạo xung sơ cấp , mất mát tại các chân này tần số VCO không đạt chuẩn dẫn đến hệ thống tuning trong IF không với tới các băng tần cao, hoặc sẽ không đồng bộ được với các chuẩn băng tần có độ chính xác cao, dẫn đến mạng chập chờn, thậm chí có mạng không đồng bộ được, mà thường là mất một mạng nào đó ( thường là mạng có chuẩn chất lượng cao, đa dịch vụ).
Điện áp điều khiển tạo tần số VC được lấy ra từ H2N600 và đưa về chân 1 của VCO. Điện áp này biến thiên từ 0,6vol đến 4,7vol qua điện trở hạn chế dòng R650 , được lọc nhiễu bằng C652,654và được loại trừ xung tạp tán bằng bộ lọc RC .Xuất xứ của điện áp VC là từ VR6-4,75vol vào G7N600.Mất điện áp này , không có điện áp VC, VCO không tạo ra tần số , toàn bộ hệ thống cao tần bị tê liệt.
Nếu phải tham khảo mạch VCO các bạn lưu ý rằng , toàn bộ mạch lọc điện áp trên nó đều là biến thể của mắt lọc hình "pi"- một kiểu lọc tối ưu cho các thiết bị tần số siêu cao. Dĩ nhiên can thiệp sâu, cũng như tùy tiện thay đổi thiết kế của nó sẽ gây các hệ lụy trực tiếp.
Tần số VCO trong Nokia 8310 nếu thực hiện chuẩn sẽ đạt từ 3420 đến 3840 MHz được đưa ra tại chân 5 VCO để tiếp cận bộ biến áp phân pha T650. Cấu tạo của nó dù biểu diễn dưới hình thức nào thì cũng hoặc là cuộn dây hoặc là gốm áp điện mắc theo chiều đối. Sau khi được phân pha thành công , pha dương được đưa vào J5,pha âm được đưa vào J4 N600, cung cấp cho các tầng thuật toán xử lý tiếp. Mục đích cuối cùng là lấy ra được tần số đồng bộ được với chuẩn sóng mang băng tần ghi trên SIM.

glsvn
09-06-2012, 08:45 AM
Phần 8 : Mạch TX cao tần và ICPAHF
Như chúng ta biết, khối giao tiếp cao tần có 2 tuyến : Tuyến phát gọi là TX, tuyến nhận gọi là RX. Chỉ khi nào cả 2 tuyến này hoạt động chính xác thì việc kết nối và duy trì liên lạc mới được thực hiện. Tất nhiên, để đạt được yêu cầu này thì một loạt các giàng buộc khác như nguồn, phần mềm, DSP... phải tốt. Nhưng trước hết ta tìm hiểu tuyến TX là tuyến được coi là cánh cổng mở trước để đưa MS tiếp cận với thế giới bên ngoài.
Sau khi lắp SIM, phần mềm hệ thống có trách nhiệm nhận dạng công nghệ và tần số sóng mang, thông qua CPU đưa tín hiệu này điều chế thành tần số chuẩn ( bộ điều chế này có thể được tích hợp trong IF, hoặc trong DSP, thậm chí nó được 1 IC riêng rẽ đảm nhiệm). Tần số chuẩn sau điều chế chính là cái phôi của cột sóng. Có nghĩa là nếu việc điều chế chuẩn này không thành công, hoặc điều chế bị lỗi...thì cho dù tuyến TX có tốt mấy đi nữa trên màn hình vẫn không hiện cột sóng. Hay nói cách khác, tuyến TX (trong đó có cả IC công suất cao tần) giống như lòng trắng và lòng đỏ trong quả trứng- chúng chỉ là chất dinh dưỡng nuôi con gà, còn con gà chính là cái phôi bé tí ẩn trong lòng đỏ .
Đến đây ta đã hiểu: Sóng được hình thành là kết quả tổng hợp của nhiều yếu tố, mà mầm mống của nó bắt đầu được hình thành từ SIM và thông qua bộ điều chế chuẩn do phần mềm quy ước. Còn tất cả phần cứng trên đường nó đi qua chỉ là bộ phận "nuôi dạy" cho nó "lớn khỏe" và "sống" cho đúng "chuẩn" của từng công nghệ .
Tuyến TX cao tần và ICPAHF máy 8310 :
Sau khi điều chế thành chuẩn và được "cài" vào cao tần, tín hiệu TX được phân thành pha âm và pha dương trong IF để rồi cuối cùng đưa ra trên A1-B1 là chuẩn GSM; trên A2-A3 là chuẩn DCS. Ở đây chúng ta chỉ đề cập đến chuẩn GSM :
Sau khi ra khỏi IF, tín hiệu GSM phải đi qua tụ lọc bù pha C726 và vượt qua bộ lọc nguồn cấp cho cực máng MOSFET cuối (trong IF) được lấy từ VR2-2,8Vol.Tụ C701, 702 cách điện một chiều, bảo vệ Z700. Mất điện áp tại VR2, tầng sửa méo và khuyếch đại nâng biên trong IF không làm việc, tín hiệu chuẩn mất, dẫn đến mất cột sóng .
Sau khi được hợp pha nhờ Z700, tần số đầy đủ (hoặc gần đầy đủ) hợp chuẩn GSM được đưa vào chân 4 IC PAHF.
Nhiệm vụ chính của IC PA là phải làm cho tin hiệu này đủ khỏe để phóng lên ANTEN theo sự điều khiển của các chân lệnh phát ra từ IF :
* Nguồn cấp cho IC PA được lấy trực tiếp từ BATT và vào các chân chức năng sau:
- Vào trực tiếp chân 3 để cấp năng lượng cho Tranzitor công suất phát cao tần GSM.
- Vào trực tiếp chân 7 để cấp năng lượng cho Tranzitor công suất phát cao tần DCS.
- Thông qua L705 vào chân 2 cấp năng lượng cho khối khuyếch đại trước cuối công suất GSM.
- Thông qua L708 cấp cho khối dò sai tần (để định lượng việc mở nguồn nhiều hay ít cho Tranzitor công suất) , nếu đường nguồn này không ổn định, việc cung ứng nguồn không chính xác, Tranzitorcong suất hoặc mở rất lớn phát nhiệt mạnh , làm giảm tuổi thọ của IC PA; hoặc không mở, Tranzitor công suất không có năng lượng để làm việc, IC PA nguội lạnh và kèm theo đó là mất sóng.
- Thông qua L704 cấp cho khối tiếp nhận và xử lý lệnh điều khiển chung . Mất nguồn này việc thực hiện thông dẫn tuyến cao tần TX bị gián đoạn, mà biểu hiện rõ nhất là mất sóng, rớt mạng.
- Lệnh điều khiển mở mức vào chuẩn GSM phát ra từ chân A6 IF và được đưa vào chân 26 IC PA.
- Lệnh điều khiển mở mức ra chuẩn GSM phát ra từ chân D6IF và được dưa vào chân 19 IC PA .
- Lệnh điều khiển chọn chuẩn GSM hay DCS được thực hiện thông qua mức logic từ chân B5 IF và được đưa vào chân 13 IC PA .Nếu mất lệnh này thì chức năng đa công nghệ của MS coi như bị mất, kèm theo đó là mất sóng, mất mạng.
- Giám sát và điều khiển chuẩn GSM được thực hiện thông qua mực áp tại A5 đưa vào chân 17 sau khi được hạn dòng nhờ R704.
Tất cả các đường lệnh này đều bị chi phối bởi đường hồi tách xung báo về IF trên chân 3 L750 thông qua điện trở so mẫu R755,và được chia định rạng bởi tổ hợp R754, R751, 752, 756, 757 và C 751, 752, 753, 754, 756 mà thành. Nếu đường hồi tách xung này sự cố thì gần như ta sẽ nhận được cùng lúc sự chập chờn của sóng và mạng.
Cũng từ chân 3 L750 người ta còn đưa tín hiệu này về chân C7 ICIF để nắn ( dưới dạng tách tần số ) thành tín hiệu điện để giám sát giúp cho các đường lệnh điều khiển luôn luôn ổn định.
Qua diễn giải trên các bạn nhận rõ một điều là :
IC công suất cao tần của NOKIA 8310 là một tổ hợp lai vỏ kín, trong đó chứa đựng riêng rẽ hai khối xử lý và khuyếch đại công suất cao tần GSM và DCS. Việc chỉ định cho khối nào hoạt động là do mã đã được tích hợp trong SIM do lệnh điều hành hệ thống quyết định thông qua kết quả việc điều chế tín hiệu chuẩn.
Điều khiển và giám sát để IC công suất cao tần (PAHF) hoạt động ổn định và chính xác là các chíp thuật toán trong IC IF, nhờ sự tác động của việc xử lý tín hiệu báo về.

giangnt
09-06-2012, 08:45 AM
PHẦN 9 : Nguyên lý hoạt động tuyến nhận (Rx) của MS và mạch Rx máy N8310 Phần trước chúng ta đã biết :
- “Phôi” sóng được thành hình từ quá trình xử lý cứ liệu định sẵn trong SIM thông qua ngôn ngữ điều khiển của hệ thống phần mềm IF do CPU gửi lên.
- IC công suất cao tần (PAHF) chỉ là “cô nhi viện” tiếp nhận nuôi dưỡng cái “phôi” này “đủ lông, đủ cánh” để đương đầu với mọi thử thách “ngoài đời” theo sự “chỉ dẫn” của IF thông qua các điện áp điều khiển VC.
Như vậy nếu đã có “phôi” mà nơi nuôi dưỡng nó không hoàn thành nhiệm vụ thì nó sẽ “chết non”, mà màn hình chỉ xác định sự hiện diện của nó khi nó đã thực sự trưởng thành. Cũng có nghĩa : Nếu mọi sự biểu hiện bất thường của cột sóng trên màn hình thì chúng ta phải cùng lúc xác định 2 nguyên nhân :
Mất sóng là do chưa “sinh sản” được “phôi” hay do quá trình nuôi dưỡng của công suất.
Bài nay chúng ta tiếp tục tìm hiểu tuyến RX .
Như chúng ta đã biết, sau khi kết nối thành công, chuyển mạch anten (ANTEN.SW) luôn trong chế độ thường đóng tuyến nhận (ENTX) để sẵn sàng báo gọi. Giám sát chức năng này là các điện áp VC được cung ứng từ IF.
Đối với các series s60 trở về trước thì bộ ANT.SW đôi khi bị giới thợ chúng ta biến thành những mối nối vật lý mà không gây ảnh hưởng lớn trên tuyến RX. Bằng chứng là trên hầu hết các dòng này khi nghi ANT.SW hỏng họ đều đấu tắt đường dẫn ở một băng tần nào đó, và “nhiều năm vẫn dùng tốt”.
Song ở các máy chất lượng cao thì hành vi này đồng nghĩa với việc chúng ta đã thủ tiêu mất một chức năng quan trọng là định chuẩn tần số tuyến nhận - Vì sao vậy ? Gọi là “chuyển mạch anten” thực ra là ta gọi tên chúng theo hiện tượng, nếu gọi đúng tên bản chất của nó thì phải là “Bộ thông tần chuẩn điều khiển theo áp”.
Bởi vậy trên bất cứ bộ chuyển mạch anten nào cũng có sư hiện diện các áp DC (đôi khi lai thêm AC) điều khiển các băng tần tuỳ theo quy ước.
Nguyên lý hoạt động của chúng như sau :
Sau khi SIM xác lập băng tần và đươc CPU gửi lên IF, các chíp nhận dạng trong IF lập tức xuất ra điện áp tương ứng điều khiển bộ tạo tần trong ANTSW phù hợp với sóng mang của băng tần đó. Theo thiết kế kinh điển thì băng tần càng cao điện áp điều khiển cung ứng cho bộ nạp xả trong ANT.SW càng thấp và ngược lại băng tần càng thấp thì điện áp cung ứng cho bộ nạp xả càng cao. Do vậy, cùng một đường cấp áp, nếu chúng ta lắp SIM băng tần 900MHz thì áp VC của băng tần này phải khác (hoặc lớn hơn, hoặc nhỏ hơn, tuỳ thiết kế) với áp VC của băng tần 1800 MHz. Nếu việc cấp áp là đúng chuẩn, ANTSW tốt, dùng phân tích phổ ta sẽ nhận được dạng sóng mang đúng chuẩn ngay tại đường ra của ANTSW.
Mô hình thiết kế 1 bộ ANT.SW :
Hạt nhân quan trọng trong mỗi bộ ANT.SW là các Varicap có tần số cắt siêu cao, với đặc tính tự triệt tiêu xung ký sinh. Điện dung của chúng thay đổi tuỳ thuộc vào điện áp phân cực ngược trên chúng. Để tạo chức năng tạo xung , người ta phải thiết kế kèm theo một tải xả điện khi bị đảo pha tần số. Do trở tải không đổi, điện áp cấp thay đổi thì tốc độ nạp xả của chúng thay đổi. Lợi dụng tính chất này mà người ta điều khiển tần số xung của chúng bằng việc thay đổi điện áp cấp trên K varicap. Đôi khi điện áp này còn tham gia định thiên cho một bộ khuyếch đại biên độ tích hợp cùng với bộ tạo xung. Ở một số máy đa băng tần thì ngoài công việc trên , các điện áp VC còn thực hiện chức năng vô hiệu hoá các băng tần rỗi, có nghĩa là phải làm câm các băng tần còn lại để chúng không can nhiễu sang nhau, thông qua các chuyển mạch điện tử được tích hợp sẵn. Việc này lý giải vì sao trên các máy đa băng tần người ta phải cung ứng cho mỗi băng tần một nguồn VC độc lập - Khi nguồn này đang tham gia tạo xung thì các nguồn còn lại phải tham gia nối mát các bộ dẫn tín hiệu băng tần rỗi bằng cách hoán đổi vị trí phân cực các phần tử RCV.
Phân tích nguyên lý hoạt động tuyến RX máy N8310 :
Tần số hỗn hợp (hỗn tần) được ANTEN cảm ứng và cho qua bộ bảo vệ X501 vào chân 12 bộ cộng hưởng chuẩn anten mà ta thường gọi là ANT.SW. Nếu là công nghệ GSM, từ D4 IF sẽ cung ứng điện áp tương thích để tạo tần kết nối, và được nâng sửa biên nhờ bộ phối hợp RC. Tín hiệu này được đưa tiếp vào L502,L503 là biến thể của mạch phân tần thông cao được định dạng bởi cảm kháng ngược chiều của chúng. Do phải vượt qua nhiều mắt lọc trở thuần thấp nên tín đến đây đã rất “yếu mệt” nên người ta phải tìm cách phục hồi “sức khoẻ” cho nó bằng cách khuyếch đại biên độ nhờ V500 qua tụ C501, tụ này nối thông tín hiệu và có vai trò cách điện 1 chiều bảo vệ cho bộ khuyếch đại trước và sau. Cấp áp cho cực C - V500 là điện áp ra tại D2 ICIF, điều khiển V500 là điện áp VC được cấp từ B2 trong IF - Mức điện áp VC này còn tham gia chức năng vô hiệu hoá V500 khi tuyến RX tham gia các băng tần công nghệ DCS. Khi thu DCS, điện áp tại C-V500 giảm đáng kể, VC trên BV500 tăng , tín hiệu nhiễu từ B sang C V500 bị nối thông xuống mát qua tiếp giáp CE V500. Các điện áp điều khiển này có được là nhờ dữ liệu của SIM từ bộ xử lý trong CPU gửi lên.
Sóng chuẩn sau khi được làm cho khoẻ được đưa vào bộ định chuẩn phân pha. Đây thực chất là một tổ hợp gốm áp điện mà phía thứ cấp là hai miếng tinh thể được định dạng ngược chiều nhau và nhờ vậy biên độ được tách cực tính. Đây là đặc thù nhằm nâng cao tốc độ truyền dẫn thông tin kỹ thuật số, nó na ná như việc phân dãy số nhà bên chẵn, bên lẻ trên các dãy phố, giúp cho việc xác định nhanh số nhà cần tìm. Tụ C505, C506 dẫn thông tín hiệu và ngăn dòng một chiều từ IF xâm thực vào Z501, L501 là cuộn dây bù cực tính, khi pha “dương” tăng, phần “thừa” sẽ nối thông bù vào pha “âm” đang “âm” hơn và ngược lại .
Nếu toàn bộ các phần tử trên tuyến RX tốt, các điện áp điều khiển chuẩn xác, sóng mang GSM chứa đựng nội dung thông tin sẽ vào ICIFN600 trên C9,B9 để xử lý thành đúng chuẩn của SIM - mà thực chất là chia nhỏ n lần sóng mang để có tần số trung bình (trung tần) chuẩn đưa xuống DSP xử lý tiếp.

lananh_hiep
09-06-2012, 08:45 AM
anh Tuan An hay nhan loi cam on cua nguoi em moi vao nghe nay goi den anh. Chuc anh nhieu suc khoe va mong anh luon goi den tui em nhung de tai huh ich nhu the nay anh nhe.
Chú ý : Bài viết phải có tiếng việt có dấu. Nếu không sẽ bị xoá.